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RESPONSE TIHE CORRELATIONS FOR 
PLATINUM RESISTANCE THERMOMETERS IN  FLOWING FLUIDS 

BY 
1 Dhirendra Kunar Pandey , Co-Princi pal Investigator 

Robert L. Ash,? Principal Investigator 

SUmARY 

The thermal response o f  two types of Plat inun Resistance Thermcnneters 

(PRT's), which are being considered f o r  use i n  the National Transonic Wind 

Tunnel Fac i l i ty ,  were studied. Response time correlat ions f o r  each PRT, i n  

flowing water, o i l  and a i r ,  were established separately. 

1264.9 A universal correlat ion, T y 0 ~  = 2.0 + -7 f o r  a Hy-Cal Sensor 

(wi th a reference resistance of 100 ohm) w i th in  an e r ro r  o f  20% was estab- 

l ished while the universal correlat ion for the Rosemount Sensor (with a 

1105 6 reference resistance o f  1000 ohm), rOA = 0.122 + --, was found wi th  a 

maximum percentage e r ro r  o f  30%. The cor re la t ion f o r  the Rosemount Sensor 

was based on a i r  and o i l  d ~ t a  only which i s  cer ta in ly  not  su f f i c i en t  t o  

make a correlat ion applicable t o  every condition. Therefore, the corre- 

l a t i o n  needs more data t o  be gathered i n  d i f f e ren t  f lu ids .  Also, i t  i s  

necessary t o  state tha t  the calculat ion o f  the parameter, h, was based on 

the avai lable heat transfer correlations, whose accuracies are already 

reported i n  1 i terature uncertain w i th in  20-30%. Therefore, the universal 

response constant correlat ions established here f o r  the Hy-Cal and 

Rosemount sensors are consistent w i th  the uncertainty i n  the input  data 

and are recomnended f o r  future use i n  flowing l iqu ids  and gases. 

'~esearch Assistant Professor, Department of Mechanical Engineering and 
Mechanics, Old Dominion University, Norfolk, V i rg in ia  23508. 

2 ~ h a i  man, Department o f  Mechanical Engineering, Old Dominion University, 
Norfolk, V i rg in ia  23508. 



1. INTRODUCTION 

Transducer response charac ter is t i cs  are a c r i t i c a l  element i n  the  de- 

s ign  and operation of cont ro l led  mechanical systems. Temperature transduc- 

e rs  (thermometers) are an important c lass of instrunents used i n  temperature 

control ,  and the  Pl at inun Resistance T h e m e t e r s  (PRT) c lass o f  thenome- 

t e r s  i s  the subject o f  t h i s  invest igat ion.  

The most systematic e a r l y  work on measuring the  time constant o f  (glass 

bulb)  thermometers was developed by Harper [I] i n  1912. He observed the 

influence o f  f l u i d  properties, convection and ag i ta t ion  on the  time constant 

o f  the thermometer. Subsequently, the denand for accuracy has changed the 

design o f  tenperature sensors. Goodwin [2] and Hornfeck [3] studied the 

response time and thermal l ag  o f  t h e r m m ~ t e r s  when they were placed i n  a 

wel l ,  and other more deta i led  studies o f  time-? ag i n  sheathed indus t r i a l  

thermometers can be found i n  references [4-81. 

Aikman e t  a l .  [5] and Looney [8] suggested the  use o f  heat t rans fer  

c o e f f i c i e n t  t o  determine the  e f f e c t i v e  time constant. This idea was used 

extensively by Kerl  f n  e t  a l .  [I)-13) i n  establ ish ing a co r re la t i on  o f  the  

t ime constant f o r  several p l  at inun resistance thermometers. Hashemi an and 

K e r l i n  [13] have reported recent ly  a cor re la t ion  f o r  a Rosemount Sensor of 

1000 ohm* Rosemount PRT, which was being considered f o r  use i n  the  National 

Transonic Wind Tunnel F a c i l i t y  (NTF) a t  NASA Langley Research Center. How- 

ever, they had reservations about the  genera l i ty  o f  the corre lat ion.  There- 

fore, the object o f  t h i s  study was t o  v e r i f y  o r  improve the  estimates and 

character ize the response behavior o f  these sensors. The u l t imate  nb jec t ive  

- 
*Platinun , ,sistance thermometers are characterized t y p i c a l l y  by t h e i r  ref -  
erence temperature resistance value. 



i s  t o  predict  the response character'istics o f  these sensors i n  the wind 

tunnel environments o f  the National Transonic F a c i l i t y  (NTF) a t  NASA Langley 

Research Center. 

The Plunge Method recomnended by ASTM [17] was used i n  t h i s  study t o  

determine the time constant o f  a Hy-Cal and Rosemount Sensor. Experimental 

data were analyzed and compared wi th previous l i te ra ture .  Thus, correla- 

t ions t o  predict  time constants f o r  each PRT sensor have been establ ished. 

2. RESPONSE TIME CONSTANT 

The behavior o f  a sensor can be characterized by i t s  response t o  a 

disturbance i n  i t s  surroundings. Such disturbances are a step change, a 

1 inear ramp change, or  a sinusoidal osc i l la t ion.  A simple and accurate 

method used i n  t h i s  study i s  a step change as i l l u s t r a ted  i n  Figure 1. This 

step change may be produced by plunging the sensor from a reference mediun 

i n t o  a moving f l u i d .  Time constant i s  then defined as the time required for 

the sensor t o  register  63.2% o f  the temperature change. The time constant 

o f  a temperature sensor depends on the physical properties o f  the sensor, 

transport properties o f  the f l u i d  and the thermal environment. The thermal 

environment can include effects due t o  convection, conduction and radiat ion. 

Turbulence in tens i t y  and d is t r ibuted thermal capacities also a f fec t  the time 

constant. 

A ihan  e t  al. [4] and Looney [8] suggested that  a s ingle time constant 

approximat ion of the 1 aq o f  temperature-sensing devices i s  often adequate 

f o r  determininq the ef fect  o f  the system lag on the control loop. This 

s ingle time constant has been related t o  the environmental conditions 

through an external heat t ransfer  coef f ic ient ,  h, and the suggested corre- 

1 at ion takes the form: 





where Cl and C2 are co r re la t i on  constants. Recently, K e r l i n  e t  a?. 

[3-131 have used t h i s  idea extensively i n  t h e i r  work. They designated 

as the  in te rna l  component o f  the sensor t ime constant and C2 as the s ~ r -  

face component of the sensor time constant. Their  r e s u l t s  were develcyed i n  

terms o f  a lumped parameter and a d i s t r i bu ted  parameter approach f o r  e s t i -  

matinq C1 and h .  For the  Lumped Parmeter  Approach: 

whi le  f o r  the D is t r ibu ted  Parameter Approach: 

and 

where 

P = dens i ty  o f  the sensor 

C~ 
= spec i f i c  heat o f  sensor 

k = t h e ~ 1 8 1  conduct iv i ty  o f  sensor 

r = outer radius o f  sensor 
0 

r = radius a t  which sensing element i s  located ins ide  the  sensor. 
i 



Note tha t  5 and C2 are t o t a l l y  dependent on sensor properties. 

Process temperature may change t h e i r  nunerica'l values (due t o  temperature 

dependent properties), but, i n  any case, C1 and C2 should not be 

negative on physical grounds. The resu l ts  o f  Hashemian and Kerl i n  113) 

contradicted t h i s  non-negative requirement eor the Rosemount ' they tested i n  

tha t  a negdtive value f o r  C1 was reported. That r esu l t  w i l l  be discussed 

1 atgr. 

3. HEAT TRANSFER COEFFICIENT 

3.1 Heat Transfer Coeff icient i n  Flowing Liquids 

The accurate determination o f  the time constant using Equation (1) 

depends on the accuracy o f  the heat t ransfer  coef f ic ient  estimate f o r  the 

sensing element. A f i r s t  order estimate o f  the heat transfer coef f ic ient  

can be obtained by t reat ing the sensor as an i n f i n i t e l y  long c i r cu la r  cy l  in -  

der i n  a cross flow. Numerous investigations on t h i s  topic have been re- 

ported i n  the 1 i terature. McAdams' [14] correlat ion i s  used widely by re-  

searchers. That correlat ion f o r  water was found va l id  by Fand [15,16] over 

the Reynolds nunber, Re, ranqe o f  0.1 < Re < lo5.  McAdams' [14] correla- 

t i o n  can be expressed as 

D 
h sh where Nu = Nusselt Nunber = - 

k 

Re = Reynolds Nunber = Dsh " 



and 

IJ c 
r Prandtl Nunber = 1 

Watt h = heat t rans fer  coe f f i c i en t ,  - 
m 2 ~  

DSh = sheath diameter, m 

Watt 
k = thermal conduct l v i t y  o f  f l u i d ,  - 

mK 
m 

U = f low veloc i ty ,  - 
sec 

Kg u = Oynmicv iscos i ty , -  
m sec 

Cp = Speci f ic  heat o f  f l u i d ,  
Watt Sec 

Kg K 

McAt?.unsl co r re la t i on  i s  found t o  be excel l e n t  i n  the Reynolds nunber range 

c i t e d  f o r  Prandtl nunbers between 6.58 and 380. However, the present work 

uses o i l  w i th  a Prandtl nunber on the order o f  9000 where no ca r re la t i on  

e x i s t s  i n  t he  l i t e r a t u r e .  Engine o i l  was selected t o  t e s t  the  response 

cha rac te r i s t i c  o f  the Rosemount because o f  i t s  d i e l e c t r i c  e f f e c t s  i n  f lowing 

water as recommended by the manufacturer. Therefore, equation (6 )  must be 

extended t o  incorporate t h i s  f l u i d  fo r  est imat ion o f  the  heat transfer 

coe f f  i r4ent .  

3.2 Heat Transfer Coef f i c ien t  I n  Flowing A i r  

The avai lab le 1 i t e ra tu re  on heat t rans fe r  between a cy l inder  placed 

v e r t i c a l l y  i n  f lowing a i r  was revfewed thoroughly. H i l pe r t ' s  cor re la t ions  

[19] were used i n  t h i s  work as stated betow: 



Here the Prandtl nunber i s  0.71. 

4. DESCRIPTION OF THE SENSORS 

Two Platinun Resistance Thermometers (PRTis) o f  d i f fe ren t  designs were 

tested i n  t h i s  study and are shown schematically i n  Figure 2. (lne i s  a 

Hy-Cal Sensor (100 ohm reference resistance) wi th sheath dianeter, Dsh = 

0.635 cm (Figure 2a), while the other i s  a Rosemount Sensor (1000 o h  refer- 

ence res is tance)  w i t h  sheath diameter, DSh = 0. bi34 cm (F igure 2b). It 

should also be noted that  the PRT's i n  t h i s  study had d i f fe ren t  internal  

sensor geometries and the d i f fe ren t  element/shrcud dime.~sions resul t i n  

d i f fe ren t  flows around the sensing element. Both PRT's vere designed for 

d i rec t  immersion (wet type - no thermal wel l )  with the ,' 2ath o f  each ?RT 

perforated a t  the sensing end t o  allow f l u i d  f low around the sensor. The 

specif icat ions o f  these sensors are sunmarized i n  Table 1. 

5. EXPERIMENTAL APPARATUS 

The purpose o f  t h i s  experiment i s  t o  obtain the time constants (T) of 

Platinun Resistance Thermometers (PRT1s) by using the Plunge method as de- 

scribed i n  reference [17]. Subsection 5.1 deta i ls  the apparatus f o r  the 

measurement o f  time constants for  PRTis i n  flowing l i qu ids  while Subsection 

5.2 explains the instrunents used i n  flowing a i r .  

5.1 Response Time Testing f o r  PRT i n  Flowing Liquids 

The schematic diagram o f  the Plunge Method which was used t o  obtain the 

time constants f o r  the PRTis i s  shown i n  Fiqure 3. A photograph o f  t h i s  set 

up i s  also given i n  Figure 4. The experimental apparatus consisted o f  a 

mechanical system and an electronics system. 
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Speci f i c d t i o n  

Model 

Seri a1 

Sensor Type 

NO. ~f E l  wnen ts/RTI) 

NO. o f  Ledd Wires/Elenwnt 

Sheath Diameter 

Table 1 

Speci f ications o f  the PRT's Tested 

134FLA 48 

19399 

Wet 

1OOO ohms 

1 

4 

Wet 
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Figure 4. - Response time testing for PRT i n  flowing liquids. 



A. Mrchanical System 

The mechanical system had the fcl lowing components: 

I. Tank - A stainles; steel tank wi th a d i e t e r  o f  45 cm and height o f  

15  cm was employed. This tank was attached t o  a ro ta t ing  tab le  whose rota-  

t i o n  w z -  control led electronical ly .  Further, the tank was rotated 3 t  a 

specif ic speed t o  create a moving mediun around the PRT when i t  was im-  

mersed. 

11. Pneunatic Plunge Mechanism - A solenoid-controlled, pneunatic 

plunge m c h d n i a  held the PRT above the f l u i d  mediun and, on cmand, moved 

i t  f ran one thermal environment t o  the other creating the step tenperature 

change. This mechanism alsc i n i t i a t e d  a d i g i t a l  recording, \ ' a  a micro- 

switch, o f  the PRT's output during the step change. The recording was 

star ted j u s t  before the PRT reached the f l u i d  surface. An explanatory view 

o f  t h i s  mechanism i s  shown i n  Figure 5. 

111. Microswitch - The microswitch was used t o  i n i t i a t e  the oscilloscope 

recordings j us t  before ihe  probe reached the f l u i d  surface. 

I V .  A i r  Blower - The step temperature input was produced by heating the 

PRT, with control led hot a i r  from a blower, t o  a steady state temperature 

which was nominally 8'C above the f l u i d  temperature i n  which the sensor was 

p 1 unged . 
0. Electronics System 

The electrcnics system i s  based on a constant current source (Figure 6) 

t o  act ivate the PRT as show i n  Figure 7. This system had the fol lowing 

components: 

V. D ig i ta l  Storage Oscilloscope - This was used t o  store the PRT's 

output h is to ry  when i t  was subjected t o  the temperature step change. 



.,' - ' c -  OFl"34.5;~ F';.. .: 8 3 

OE POGR Qi'kLm 

Figure 5. - Plunge mechanism. 
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Figure 7. - Electronics package. 



V I  . 'Standard' Constant Current Source 

V T T .  Current and Voltage Meters 

Test Procedure 

The tes t  procedure consisted o f  the fol lowing steps: 

(1) F i l l  ha l f  of  the ro ta t ing  tank with f l u i d .  

(2) Put thermocouples i n t o  the moving f l u i d  t o  measure the temper- 

ature. 

(3 )  Instal  1 the PRT i n  the plunge mechanism. 

( 4 )  Set the a i r  pressure a t  20 ps i  needed f o r  the plunqe mechanism t o  

dr ive the PRT smoothly i n t o  and out o f  the ro ta t ing tank. 

(5) Set the posi t ion of  PRT r a d i a l l y  i n t o  the ro ta t ing tank where the 

ve loc i ty  o f  f l u i d  wi th in  1 mlsecond i s  assured. 

(6)  Heat the sensor by an a i r  blower up t o  5 - 8'C above the f l u i d  

temperature. 

(7) Set speed o f  tank with electronic control i n  motion wi th agreement 

of Step 5. 

(8) Put a l l  the electronics instrunents on. 

( 9 )  Adjust the immersion depth o f  the PRT i n t o  the flowing f l u i d s  t o  

avoid conduction error  along the length o f  the sensing element. 

(10) Connect the microswitch t o  the scope t o  record the response o f  the 

o f  the PRT. 

(11) Maintain 1 ma current across the PRT by adjusting 100 ohm working 

standard. 

(12) Immerse the PRT i n to  the ro ta t ing  f l u i d  using the plunge mechanism 

actuation switch. 

(13) Wait f o r  the voltage across the PRT t o  reach a steady state. 

(14) Move tho sensor out o f  the ro ta t ing tank, 



(15) Observe the response behavior o f  the PRT on the  scope and calcu- 

1 ate the time constant .r which i s  equal t o  the Sime required f o r  

a sensor output t o  r e g i s t e r  63.2% of a temperature step change. 

(16) Take a t  least  three readings f o r  each experimental condi t ion t o  

minimize personal and inst runenta l  errors.  

(17) Change the speed of r o t a t i n g  t a b l e  t o  get the more experimental 

data a t  d i f f e r e n t  condit ions. 

5.2 Response Time Testing for  PRT i n  Flowing A i r  

I n  order t o  proper ly  i n t e r p r e t  the  dynanic behavior o f  PRT's i n  a cryo- 

genic gaseous mediun, the  next l o g i c a l  step was t o  observe t h e i r  behavior i n  

a gaseous mediun ( a i r )  a t  room temperatures. Furthermore, i t  was desired t o  

attempt t o  p red i c t  PRT gaseous response using the  cor re la t ions  developed 

from the l i q u i d  tests. 

A low speed, open loop wind tunnel was used t o  determine transducer 

response over the speed range o f  5 t o  45 mlsec. That tunnel was described 

b r i e f l y  by Daryabeigi e t  al. [20]. The present experimental setup used the 

sane mechanical and e lec t ron ics  systems as de ta i l ed  i n  Subsection 5.1. The 

wind tunnel conf igurat ion i s  shown i n  Fiqure 8. 

Test Procedure 

(1)  Switch on the a i r  wind tunnel. 

(2) Put the  P i t o t  tube p a r a l l e l  t o  the a i r  f low a t  the loca t ion  where 

the PRT i s  supposed t o  be. 

(3) Read the presure reading across the  p i t o t  tube using d i f f e r e n t i a l  

pressure transducer. 

(4)  Read t h e  temperature o f  t h e  f l o w i n g  a i r  us ing  a d i g i t a l  

thermocoupl e. 





( 5 )  P u l l  the P i t o t  tube close t o  t h e  wal l  of the  a i r  wind tunnel. 

(6)  Repeat the  procedures of the  plunging method as out1 ined i n  Sub- 

sect ion 5.2 f o r  f lawing 1 iqufds. 

6. RESULTS AND DISCUSSION 

D i s t i l  led  water, engine o i l  and a i r  were used as the  forced convection 

media, and t h e i r  t ransport  proper t ies are sunmarized i n  Tbt le 2. 

To minimize the uncer ta int ies involved i n  measwing the temperature 

dependent f low properties, the f lowing f l u i d  was kept a t  r r  .mperatuze. 

Errors associated w i th  maintaining the  sensor a t  constant tt ;ture, un- 

c e r t a i n t y  i n  the f l u i d  f low ve loc i ty ,  in f luence o f  temperature dependent 

sensor proper t ies and f luc tua t ions  o r  d r i f t  i n  the e lec t ron ics  could nat  be 

avoided absolutely which i s  the  basis f o r  the  estimated uncer ta inty  o f  25%. 

The present data are presented i n  two ways: one where the  time constant i s  

considered as a funct ion o f  heat t rans fer  c o e f f i c i e n t  (h) only, which re -  

qui res an addi t ional  heat t ransfer  co r re l  ations, wh i le  the other  way repre- 

sents the  t ime constant as a func t ion  o f  the  Reynolds nunber (?e) and 

Prandtl numbers. I n  the fo l low ing sections, :he r e s u l t s  o f  response time 

fo r  each PRT are discussed. 

6.1 Response Time f o r  the Hy-Cal Sensor i n  Flowing L iquids 

The time constant, T, f o r  the  Hy-Cal Sensor determined experimental l y  

i n  water and o i l ,  i s  shown i n  Figure 9 a; a funct ion o f  the inverse o f  heat 

t rans fer  coe f f i c i en t .  Numerical values used i n  t h i s  f igure  are displayed i n  

Tables 3 and 4 f o r  water and o i l ,  respect ive ly .  Present data fit the curre- 

l a t i o n ,  rWO = 1.597 + 2083*3 (which i s  also shown i n  Figure 9). t o  w i th in  
h 

a maximum e r r o r  o f  1.4 percent. 
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Table 3 

Time Constant (t) for Hy-Cal i n  Flowinq Hater 



Table 4 

Time Constant ('t) for By-Cal in Flowing O i l  



I n  addition, t o  avoid the need of'heat t r a n s f ~ r  correlations, the pres- 

ent data (Tables 2 and 3) can be represented as 

t o  wi th in a maximum error  o f  4.8%. 

6.2 Response Time for the Hy-Cal Sensor i n  Flowing A i r  

Table 5 displays the time constant data p lo t ted i n  Figure 10 f o r  the 

Hy-Cal Sensor (100 ohm PRT) i n  flowing air .  Experimental data are conpared 

w i t h  the  t ime constant  p red ic ted  by a correlat ion, rWO = 1.597 + 2083.3 

h 

(based on water and o i l  data) and Hashemian and Ker l in 's  1131 correlation, 

'HK = 1.6 + - 4168 . The predicted time constant ruo i s  50% higher than 
h 

t h e  experimental data, wh i le  rHK [13] p r e d i c t s  18551 h igher  than the 

experimental data. It i s  important t o  note tha t  the present correlat ion 

WO' based on water and o i l  data, cannot be t rea ted  as universal. The 

e r ro r  o f  50% i s  consistent wi th the errors which occur i n  predict ing heat 

t ransfer  coef f ic ient  f o r  a i r  by using the heat t ransfer  correlat ion based on 

water data (Equation 6). To establ ish a universal correlation, one has t o  

use a1 1 the response time data observed i n  every f l u i d  and should expect an 

appreciable e r ro r  o f  20-30%. Recently, Churchil l and Bernstein [21] have 

reported a general i zed correl  at  ion f o r  heat transfer from sol i d  cy l  inders 

placed v e r t i c a l l y  i n  the f low o f  l i qu ids  and gases wi th in the uncertaint ies 

of 20-25%. 

Therefore, the present data obtained i n  f lowing water, o i l  and air,  
1264.9 shown i n  F igure 11, are co r re l a ted  by an equation, rum = 2.0 + - 

h 
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within the maxtun error of 20%. The values o f  heat transfer coeff ic ients 

based on sheath dianeter were obtained by using Equation (6) f o r  water and 

o i l  and Equation (7) for air. Such correlation can be considered as a uni- 
r 

versa1 correlation fo r  the &<a1 Sensor (100 ohn PRT) t o  predict the time 

constant i n  any flowing fluids. Also, the a i r  data are f i t t e d  by the corre- 

1 a t  ion  T = 1.3 + 1368* within the muimun error o f  2.5%. A1 1 three 
h 

co r re l  ations, tA, 'YO, and TrWOAs are compared with the experimental 

data and Hashenian and Ker l in8s [13] correlation i n  Table 5. tHK [13] pre- 

dicts larger errors overal l  because i t  was based on water data only. There- 

fore, tHK [13] cannot be t reated as a universal correlation. Response 

time correlations f o r  t&-Cal Sensor are sunmarized i n  Table 6. 

6.3 Response Time fo r  the Rosenount Sensor i n  flowing Oi 1 

Figure 12 shows the response characteristics fo r  the Rosenount Sensor 

(1000 ohn PRT) i n  o i l .  A correlation was established using the o i l  data 

displayed i n  Table 7. This correlation, T,, = 0.132 + 12880S predicts the 
h 

response time correctly to  within an error of  1.4%. Present resul ts are 

canpared with Hashemian and Ker l in  1131 i n  Table 7. It i s  important t o  note 

that the Hashenian and Ker l in  1131 correlation predicts negative time con- 

stants i n  a l l  cases. Note that the Hashenian and Ker l in  [ I31 correlation 

was based on the i r  a i r  data only. herefore, the appl i c a b i l i t y  o f  t he i r  
1 ;  
1 .  

correlation i n  flowing o i l  i s  questionable. 

6.4 Response Time for the Rosenount Sensor i n  Flowing Water 

The information reported i n  references 113, 223 does not recommend the 1 i 
testing o f  the Rosemount Sensor i n  flowing water. The reason i s  assocfated 1 1  
with the d ie lect r ic  properties o f  the Rosenount Sensor. Above al l ,  i t  was I ; 



Table 6 

Sunrnary o f  Response Tine Correlations for Hy-Cal (100 u h  W 

L 
-.- .. 

FLUIDS 
USED 

Water 
and 

o i  1 

A i  r 

water, 
Oil 
and Air 

.Water 

I 11 31 I I 
r 

CORRELATI oris 

2083.3 
f~ = 1.597 +,r. 

.TA" 1.3 + F 
1264.9 T m 1 ' 2 . 0 +  ,,, 

= 1.6 + 4168 'HK . h 

MPE 

1.4 

2.5 

20 

- 

* 





Table 7 

T i m e  Constant ( r )  for Rosemount in Flowinn O i l  



decided t o  t es t  t h i s  sensor t o  detemiine i t s  response behavior i n  flowing 

water. It was observed that  i t has a faster  responsive nature i n  flowing 

water than i n  o i l .  Keeping these uncertaint ies i n  mind, the water data 

displayed i n  Table 8 i s  correlated separately. The data i s  p lo t ted i n  Fig- 

ure 13. Further, the water data i s  not used t o  establ i sh  a universal re- 

sponse time correlat ion f o r  t h i s  sensor. Note tha t  from Table 8, again 

Hashemian and Ker l  i n ' s  [13] correlat ion predicts negative time constants i n  

i n  f 1 owing water. The present correlat ion for the water data, rU = 0.068 

i- i s  found t o  wi th in an e r ro r  o f  0.9%. h 

6.5 Response Time f o r  the Rosemount Sensor i n  Flowing A i r  

The response time a i r  data given i n  Table 9 are represented by an equa- 

t i o n  T A  = -1.983 + 309*5 w i  t h i n  an e r ro r  o f  2.5%. Experimental data 
h 

p lo t ted i n  Figure 14 are compared with the Hashemi3n and Ker l in  1131 

r e s u l t s  . The existence o f  negative values f o r  C1, reported i n  the 1 i te ra-  

tu re  (reference 13) as well as found i n  the present correlation, are obvi- 

ously inconsistent with the known fac t  that  response time i s  pos i t ive  even 

as heat transfer coef f ic ient  increases without bound. In  addition, the 

present authors have t r i e d  other possible ways t o  correlate the experimental 

data i n  the fol lowing ways: 

( A )  TA  = 5962 Re -'754 P r  '*333 wi th in the maximum error  o f  5%. 

and 

(6) T A  = -2.809 + 1393 Re -'554 P r  -*333 wi th in the maximum error  o f  

2.8%. 

Note that  Equations (A) and (8) w i l l  reduce t o  zero and -2.809, respec- 

t i ve ly ,  as Re approaches t o  i n f i n i t y .  Again, the predicted resu l ts  become 



Table 8 

Time Constant (r) for Rosemount I n  Flowing Water 









inconsistent wi th the t rue expected values cif  response time. Some other 

parameters, 1 i ke  Reynolds nunbers b. -4 on sensqr dimeter, gap between the 

sheath and sensor, and the r a t i o  o f  the hole dianeter on sheath t o  the gap 

were tr ied, but the values o f  C1 remained negative. 

I t  i s  necessary t o  note tha t  the Rosemount Sensor's behavior does not 

ljecolne questionable i n  flowing l i qu ids  i n  which the values o f  Cl were 

never found t o  be negative. Therefore, i t  i s  possible that  a universal 

correlat ion f o r  the Rosemount Sensor ex is ts  f o r  1 iquids other than water. 

- I n  add i t ion,  t he  o i l  and a i r  data were co r re l a ted  by an equation rOA - 
1105.6 

0.112 + - within the er ror  o f  30%. Note that  C1 i s  not found t o  be 
h 

negative. The a i r  data are presented i n  Figure 15. The er ror  o f  30% i s  not  

1 arge, once oqe i s  1 wking f o r  a generalized correlat ion applicable t o  any 

situations. Mote that  t h i s  er ror  i s  also associated wi th the values o f  h 

which were determined from the heat transfer correlat ions 114, 191 reported 

i n  l i t e ra tu re .  Heat transfer correlat ions are found wi th in the er ror  of 20- 

30%. 

However, the authors believe that  a universal correlat ion f o r  t h i s  

sensor can be found by having more data i n  flowing a i r  and l iquids.  We also 

b e l i e v e  t h a t  a neqative Cl i n  a i r  correlat ion rA (Table 10) i s  associ- 

ated with the experimental data given i n  Table 9. There i s  a systematic 

e r r o r  of 2 seconds between experimental data and predicted values by r0 
= 

0.132 + 1 2 8 8 . 5 l t  based on o i l  data (Table 7). 

7. PREDICTION OF T IME CONSTANTS AT CRYOGENIC CONDITIONS 

This section uses the response time correlat ions as establ ished f o r  the 

PRT's t o  predict  time constants a t  a given cryogenic conditions. Note that  





Table 10 

A i r  
2326 

t HK =-= .6+ -  h 
[UI 

- 



the conditions used here, don't represent the real s i tuat ion occurring i n  

National Transonic Facil  i t y  a t  NASA, Langley Research Center. 

EXWLE: Estimate the time constants fo r  the Hy-Cal and Rosemount Sensors 

exposed t o  Nitrogen gas flowing at  25 m/second i n  cryogenic wind tunnel. 

The gas i s  maintained at  1 atmospheric presure and temperature o f  200 K. 

Thennophysical properties o f  Nitrogen Gas [Ref. 181 are given below: 

P r  = 0.747 (closed t o  a i r )  

Hy-Cal Sensor 

Using Equation 7 

Present response time correlation estimates 



UOA = 2.0 + = 7.40 seconds 
234.2 

and 

T~ 
= 1.3 + 1368*5 = 7.14 seconds 

234.2 

bile Hashemian and Kerl i n's co r re la t i on  [13] predicts 

'HK = 1.6 + 4168 = 19.40 seconds 

C131 
234.2 

The universal correlat ion, rUOA which i s  based on water, o i l  and a i r  data, 

predicts  a 3.6% larger  e r r o r  than a co r re la t i on  rA based on a i r  data only. 

Such an e r ro r  must be expected from a universal corre lat ion.  It i s  neces- 

sa ry  t o  n o t e  t h a t  Hashemian and Ker l i n ' s  correlat ion, rHK 1131 overest i -  

mates t h e  response t ime by 172%. Such a discrepancy i s  j u s t i f i a b l e  because 

t h e i r  c o r r e l a t i o n  was based on water data only. Therefore rHK 1131 cannot 

be used i n  f lowing gases. Thus t h e  u n i v e r s a l i t y  o f  Hashenian and K e r l i n ' s  

[13] cor re l  at ion  i s  questionable. 

Rosemount Sensor: 

Using Equation 7, 



Present response time correl  at ion estimates 

OA = 0.112 + 1105*' = 5.47 seconds 
206.4 

and T A  = -1.983 + 1309*5 = 4.36 seconds 
206.4 

Using Hashemian and Ker l in 's  [13] correlat ion, the time constant i s  computed 

The correlat ion rOA which i s  based on o i l  and a i r  data gives 5.47 seconds, 

wh i l e  T~ based on a i r  data o n l y  p r e d i c t s  4.36 seconds a t  the sane con- 

d i t ions.  The r e l a t i ve  e r ro r  i s  found t o  be wi th in  18%. Such er ror  one 



shoul d expect from a universal cor re la t ion l i k e  rOA = 0.112 + 1105.6. It 

h 

i s  important t o  note t ha t  Hashmian and Ker l in 's  cor re la t ion 1131 does not  

srjrvive i n  such an environnent, although t h e i r  cor re la t ion [13J was based on 

t h e i r  a i r  data. Furthennore, rHK [13] also predicts negative time constants 

i n  fl owi ng water tnd o i l  (Tables 8 and 9). 

8. CONCLUSIONS AND RECOMENDATIONS 

Based upon the experiment a1 measurements developed i n  t h i s  invest  iga- 

tion, i t  i s  possible t o  ccnclude t ha t  the response time o f  ven t i l  ated, p l  at- 

i nun resistance thermometers can be correl  ated wi th  the reciprocal o f  the 

heat transfer coef f ic ient  i n  a given f lu id .  The experimental data corre- 

lated f o r  the m 6 a l  and the Cdosemount sensors are given i n  Tables 6 and 10, 

respectively . 
Furthermore, a un ive rsa l  c o r r e l a t i o n  rWOA = 2.0 + 1264*9, f o r  the 

h 

Hy-Cal Sensor w i th in  the uncertaint ies o f  20% has been established. A uni- 

versal  c o r r e l  at  i o n  rOA = 0.112 + 1105*6 , f o r  the Rosenount Sensor based 
h 

on o i l  and a i r  data i s  found t o  be wi th in  the uncertaint ies o f  30%. Such 

er ror  one should expect f r an  a universal cor re la t ion which can be applied t o  

any flowing mediun i n  which the Frandtl nunber varies frorr, 0.7 t o  10,000. 

It i s  necessary t o  mention tha t  the important paraneter, h, i s  computed 

f ran heat transfer correlat ions [14, 191 h i c h  are already reported un- 

cer ta in  t o  wi th in  20.30%. 

An exanpl e based on cryogenic conditions was also set up t o  t e s t  the 

present and previous response time correlations. It was found t ha t  the 

present response time correl  ations maintained i t s  accuracies w i  t h  the ex- 

per imental  data, whl le Rshemian and Ker l in 's  correlations, rHK [13] were 



determined inappl icable t o  every situation. The universal i t i e s  of t h e i r  

cor re l  ations [13] were found h iqh ly  quest ionable. 

In  conclusion, we reconmend our universal response time correl  a t  ions 

fo r  each PRT t o  predict  time constants i n  any f lowing medim. We also 

reconmend qathering more response time data so that  the e r ro r  as found i n  

establ ishing a universal cor re la t ion could be reduced. 
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